Visual Basic program "VB BHmerger" - Description and operation

Contents

Introduction and Purpose

The purpose of the Visual Basic program "BHmerger" is to demonstrate:
  1. That it is possible that photons can circulate around a blackhole
  2. What is involved if two Black Holes merge.
  3. The influence of a third BH.
To download an executable select: VB BHmerger.zip
This zip file contains 1 program:
The same program is also available in VB2010. To download an executable select: VB2010 BHmerger.zip
This zip file contains 1 program:
For e description of that program select: Visual Basic program "VB2010 BHmerger" - Description and operation

For more information goto: Implementation details


2. Description

The Visual basic program program "VB BHmerger" consits of 2 Forms (or displays):


3. Operation - Control Form

Operation of the program is done from the Control Form.
The Controm Form uses 5 Commands: Start, Cont, Next,End and Stop. This depends about were you are during the simulation or program execution.
Forward Backward
Picture 1A
  • Picture 1A shows the control display in case of one BH and a lightray.
    The Control Form in case of 1 BH uses the following control paramaters:
    # BH , Max count , v/c , BH 1 , dist12 and freq
The parameter # BH defines the number of Black Holes.
  • #BH = 1 : One Black hole and a "mass less" particle or photon.
  • #BH = 2 : Two Black Holes.
  • #BH = 3 : One binary Black Hole pair and a third smaller Black Hole.

In case of # BH = 1 the following control parameters are used:

  • The parameter Max count defines the number of iterations in the first revolution.
  • The parameter v/c defines the speed of the second object relative to the speed of light.
  • The parameter BH 1 defines the mass of BH 1 in sun masses.
  • The parameter dist12 defines the distance between object 1 and object 2.
    With # BH = 1 the parameter dist12 defines the radius of the "mass less" particle.
    With v/c = 1 the parameter dist12 defines the radius of a photon circling around a BH.
  • The parameter freq is the number of revolutions per second.
The Control Display also shows the following parameters:


3.1 Operation - Control Form. Parameter # BH = 1

In case # BH = 1 there are three ways to control the simulation.
  1. Select BH 1 and v/c
    In that case the parameters dist12 and freq are calculated
    For Example:
    Select: "Start".
    Enter first parameter # BH = 10000 and than enter parameter v/c = 1
    Select "Cont"
    The following table shows the result of 7 tests:
    Test BH 1 v/c dist12 f total time
    1 10000 1 14766 3.23 .3094
    2 10000 0.5 59065 0.40 2.4758
    3 10000 0.25 236261 0.05 19.8067
    4 100000 1 147663 0.32 3.0948
    5 1000 1 1476.6 32.31 .0309
    6 100 1 147.6 323.1 .0031
    7 36+29 1 95.9 497.1 .0020
    • In the tests 1-3 the mass of the BH is constant and the speed of the "mass less" particle varies.
      What the results show is that how slower the speed how larger the radius = distance
    • In the tests 4-7 the speed of the "mass less" particle is constant and the mass of the BH varies.
      What the results show is that how smaller the mass how smaller the radius = distance
  2. Select BH 1 and dist12
    In that case the parameters v/c and freq are calculated
    When the parameter v/c greater than one parameter v/c is set equal to 1 and the parameter BH 1 is also calculated. For Example:
    Select: "Start".
    Enter first parameter # BH = 10000 and than enter parameter dist12 = 14766
    Select "Cont"
    The following table shows the result of 9 tests:
    Test BH 1 dist12 v/c f total time
    1 10000 14766 1 3.231 .3095
    2 10000 20000 .859 2.049 .4878
    3 10000 40000 .607 .724 1.3797
    4 10000 80000 .429 .256 3.9026
    5 10000 160000 .303 0.090 11.0383
    6 10000 320000 .214 0.032 31.2211
    7 6772 10000 1 4.771 .2095
    8 677 1000 1 47.71 .0209
    9 68 100 1 477.13 .0021
    • In all the tests the mass of the Black Hole initialy is 10000.
    • Test 1 shows the situation when the "Mass less" particle is a photon.
    • The test 2-6 show the situation when distance of the "Mass less" particle is larger than test 1
      Between tests 2 and 4 the differance in distance is a factor 4, in v/c a factor 2 and in f a factor 8
      The same between the tests "3 and 4" and "4 and 6".
    • The test 7-9 show the situation when the "Mass less" particle is a photon and the distance is smaller than test 1
  3. Select BH 1 and freq
    In that case the parameters v/c and dist12 are calculated
    When the parameter v/c greater than one parameter v/c is set equal to 1 and the parameter BH 1 is also calculated. For Example:
    Select: "Start".
    Enter first parameter # BH = 10000 and than enter parameter f = 1
    Select "Cont"
    The following table shows the result of 4 tests:
    Test BH 1 f v/c dist12 total time
    1 10000 3.23 1 14766 .3095
    2 10000 2 .852 20331 .5
    3 10000 1 .676 32274 1
    4 10000 0.5 .536 51231 2
    5 6462 5 1 9542 .2
    6 4771 10 1 4771 .1
    7 2385 20 1 2385 .05
    • In all the tests the mass of the Black Hole initialy is 10000.
    • Test 1 shows the situation when the "Mass less" particle is a photon.
    • In the tests 2-4 the frequency f is less than the frequency of test 1
    • In the tests 5-7 the frequency f is larger than the frequency of test 1


3.2 Operation - Control Form. Parameter # BH = 2

Forward Backward
Picture 1B
  • Picture 1B shows the control display in case of two BH's
    The Control Form in case of 1 BH uses the following control parameters:
    # BH , Max count , v/c , BH 1 , BH 2 , dm1 % , dm2 % , dist12 and freq
In case # BH = 2 there are three ways to control the simulation.
  • Enter the parameters: BH 1 , BH 2 and v/c
    In that case the parameters: dist12 and freq are calculated.
  • Enter the parameters: BH 1 , BH 2 and freq
    In that case the parameters: dist12 and v/c are calculated.
  • Enter the parameters: BH 1 , BH 2 and dist12
    In that case the parameters: v/c and freq are calculated.


3.3 Operation - Control Form. Parameter # BH = 3

Forward Backward
Picture 1C
  • Picture 1C shows the control display in case of three BH's
    The Control Form in case of 1 BH uses the following control parameters:
    # BH , Max count , v/c , BH 1 , BH 2 , BH 3 , dist12 and freq
    alpha min, alpha max and delta
In case # BH = 3 there are also three ways to control the simulation as explained above.
  • The parameter alpha min defines the minimum angle of alpha. The standard value is 0.
  • The parameter alpha max defines the maximum angle of alpha. The standard value is 360.
  • The parameter delta defines the delta angle of alpha. The standard value is 10.
  • when you use the standard values and you select "Start" the simulation will perform 36 simulations with the angles: 0,10,20 etc until 360 degrees.
    When alpha max = 0 you only will perform one simulation.


4. Display Form

The "Display Form" shows the result of the simulation.
Forward Backward
Picture 2A
# BH = 1
Forward Backward
Picture 2B
# BH = 2
Forward Backward
Picture 2C
BH #3 = 5 m0
Forward Backward
Picture 2D
BH #3 = 10 m0


4.1 Program Evaluation with two Black Holes.

The purpose of these test is to observe the behaviour of 2 BH's
Test 1 is the galibration test
Test BH 1 BH 2 dm1 % dm2 % v/c n rev dist12 total time freq v1 v2
1 36 29 0 0 0.224 10 586.7 0.3040 32.887 54095 67153
2 50.5 29 5 0 0.224 10 479.6 0.2452 48.464 54095 94227
3 36 41.1 0 5 0.224 10 494.6 0.2538 45.653 76674 67153
4 48.8 39.3 5 5 0.224 10 432.4 0.2172 59.347 73409 91129
5 31.9 25.7 -1 -1 0.224 10 660.8 0.3408 26.295 48032 59626
6 26.5 21.3 -2 -2 0.224 10 796.2 0.4000 18.724 39865 49487
The positive influx can be simulated by introducing a third "large" object or a small BH.

In the second set of tests Test 1 is also a calibration test.
In this particular case the mass of the two BH's is identical

Test BH 1 BH 2 dm1 % dm2 % v/c n rev dist12 total time freq v1 v2
1 30 30 0 0 0.224 10 441.4 0.2065 48.422 67153 67153
2 42.3 30 5 0 0.224 10 366.3 0.1693 69.304 67153 94691
3 30 42.3 0 5 0.224 10 366.3 0.1693 69.304 94691 67153
4 40.7 40.7 5 5 0.224 10 325.3 0.1475 87.382 99129 91129
5 37.5 22.5 2.5 -2.5 0.224 10 441.4 0.2065 48.422 50365 83941
6 45 14.9 5 -5 0.224 10 441.4 0.2065 48.222 33576 100730


4.2 Program evaluation with two Black Holes and a third large object.

The following table shows the results for mass of BH #3 = 5 solar masses.
BH1  36  BH2  29  BH3 5  nrev  10 alpha min  0  max  360  delta  10  v1  54157  v2  67229  v3  0 Event GW 150914
 alpha   0 nBH 2 m1 40.9 m2 29.0 nrev 10 r1  238 r2  338 r3  382 d12 448 d13  93 d23 668 ttime 0.301 f 34.9
 alpha  10 nBH 2 m1 40.9 m2 29.0 nrev 10 r1  168 r2  239 r3  341 d12 371 d13 101 d23 648 ttime 0.241 f 44.5
 alpha  20 nBH 2 m1 40.9 m2 29.0 nrev 10 r1  128 r2  181 r3  321 d12 298 d13 110 d23 607 ttime 0.205 f 53.1
 alpha  30 nBH 2 m1 40.9 m2 29.0 nrev 10 r1  107 r2  151 r3  263 d12 255 d13 117 d23 555 ttime 0.188 f 58.5
 alpha  40 nBH 2 m1 40.9 m2 29.0 nrev 10 r1  100 r2  142 r3  196 d12 240 d13 121 d23 510 ttime 0.184 f 59.8
 alpha  50 nBH 2 m1 40.9 m2 29.0 nrev 10 r1  102 r2  145 r3  162 d12 246 d13 119 d23 484 ttime 0.191 f 57.0
 alpha  60 nBH 2 m1 40.9 m2 29.0 nrev 10 r1  113 r2  160 r3  141 d12 271 d13 113 d23 463 ttime 0.209 f 51.2
 alpha  70 nBH 2 m1 40.9 m2 29.0 nrev 10 r1  133 r2  188 r3  125 d12 308 d13 105 d23 438 ttime 0.243 f 42.8
 alpha  80 nBH 2 m1 40.9 m2 29.0 nrev 10 r1  179 r2  253 r3  192 d12 360 d13  94 d23 407 ttime 0.324 f 31.0
 alpha  90 nBH 2 m1 36.0 m2 33.9 nrev  1 r1  297 r2  314 r3  312 d12 518 d13  84 d23  57 ttime 0.500 f 32.5
 alpha 100 nBH 2 m1 36.0 m2 33.9 nrev  3 r1 1707 r2 1808 r3  278 d12 511 d13  89 d23  60 ttime 0.500 f  5.2
 alpha 110 nBH 2 m1 36.0 m2 33.9 nrev 10 r1  335 r2  355 r3  261 d12 500 d13 106 d23  70 ttime 0.487 f 20.0
 alpha 120 nBH 2 m1 36.0 m2 33.9 nrev  4 r1 2845 r2 3013 r3  605 d12 327 d13 127 d23  35 ttime 0.500 f 20.9
 alpha 130 nBH 2 m1 36.0 m2 33.9 nrev  4 r1  739 r2  784 r3  309 d12 452 d13  76 d23  57 ttime 0.500 f 12.1
 alpha 140 nBH 2 m1 40.9 m2 29.0 nrev 10 r1   51 r2   73 r3  344 d12 102 d13  98 d23  89 ttime 0.252 f 43.9
 alpha 150 nBH 2 m1 36.0 m2 33.9 nrev  2 r1 1736 r2 1838 r3  315 d12 529 d13 548 d23  60 ttime 0.500 f  4.9
 alpha 160 nBH 2 m1 36.0 m2 33.9 nrev  5 r1  820 r2  868 r3  378 d12 522 d13 607 d23  63 ttime 0.500 f 11.0
 alpha 170 nBH 2 m1 36.0 m2 33.9 nrev  9 r1  547 r2  580 r3  419 d12 496 d13 643 d23  68 ttime 0.500 f 19.5
 alpha 180 nBH 2 m1 36.0 m2 33.9 nrev 10 r1  294 r2  311 r3  452 d12 439 d13 654 d23  75 ttime 0.329 f 31.7
 alpha 190 nBH 2 m1 36.0 m2 33.9 nrev 10 r1  174 r2  184 r3  414 d12 328 d13 629 d23  86 ttime 0.231 f 46.7
 alpha 200 nBH 2 m1 36.0 m2 33.9 nrev 10 r1  110 r2  116 r3  297 d12 223 d13 557 d23 101 ttime 0.181 f 61.6
 alpha 210 nBH 2 m1 40.9 m2 29.0 nrev 10 r1   46 r2   65 r3  373 d12 104 d13 102 d23 127 ttime 0.225 f 48.6
 alpha 220 nBH 2 m1 40.9 m2 29.0 nrev 10 r1  154 r2  219 r3  489 d12 322 d13  80 d23 152 ttime 0.481 f 20.3
 alpha 230 nBH 2 m1 40.9 m2 29.0 nrev  3 r1 1330 r2 1881 r3  412 d12 444 d13  70 d23 169 ttime 0.500 f  5.6
 alpha 240 nBH 2 m1 40.9 m2 29.0 nrev  2 r1  496 r2  703 r3  350 d12 454 d13  70 d23 181 ttime 0.500 f  4.0
 alpha 250 nBH 2 m1 40.9 m2 29.0 nrev  4 r1  358 r2  505 r3  292 d12 459 d13  72 d23 191 ttime 0.500 f  6.5
 alpha 260 nBH 2 m1 40.9 m2 29.0 nrev  6 r1  324 r2  459 r3  228 d12 459 d13  78 d23 205 ttime 0.500 f 12.7
 alpha 270 nBH 3 m1 36.0 m2 29.0 nrev 10 r1  305 r2  379 r3 7103 d12 239 d13 117 d23 232 ttime 0.229 f 44.7
 alpha 280 nBH 2 m1 40.9 m2 29.0 nrev  7 r1  888 r2 1255 r3  289 d12 317 d13  74 d23 275 ttime 0.500 f  9.1
 alpha 290 nBH 2 m1 39.2 m2 29.0 nrev 10 r1  291 r2  394 r3  238 d12 180 d13 113 d23 336 ttime 0.251 f 52.4
 alpha 300 nBH 2 m1 39.0 m2 29.0 nrev 10 r1  164 r2  221 r3  263 d12 147 d13 110 d23 292 ttime 0.255 f 49.5
 alpha 310 nBH 2 m1 36.0 m2 33.9 nrev 10 r1  119 r2  126 r3  399 d12 128 d13  83 d23  76 ttime 0.286 f 34.8
 alpha 320 nBH 2 m1 40.9 m2 29.0 nrev  6 r1  571 r2  807 r3  294 d12 531 d13  78 d23 545 ttime 0.500 f 12.1
 alpha 330 nBH 2 m1 40.9 m2 29.0 nrev  7 r1  390 r2  552 r3  288 d12 531 d13  79 d23 599 ttime 0.500 f 15.1
 alpha 340 nBH 2 m1 40.9 m2 29.0 nrev  9 r1  396 r2  560 r3  375 d12 517 d13  82 d23 639 ttime 0.500 f 19.3
 alpha 350 nBH 2 m1 40.9 m2 29.0 nrev 10 r1  335 r2  474 r3  397 d12 493 d13  86 d23 664 ttime 0.394 f 26.0
 alpha 360 nBH 2 m1 40.9 m2 29.0 nrev 10 r1  234 r2  333 r3  399 d12 448 d13  93 d23 668 ttime 0.301 f 34.9

The following table shows the results for mass of BH #3 = 10 solar masses.

BH1  36  BH2  29  BH3 10  nrev  10 alpha min  0  max  360  delta  10  v1  54157  v2  67229  v3  0 
 alpha   0 nBH 2 m1 45.9 m2 29.0 nrev 10 r1   245 r2   390 r3  395 d12 372 d13  84 d23 655 ttime 0.406 f 26.2
 alpha  10 nBH 2 m1 45.9 m2 29.0 nrev 10 r1   125 r2   201 r3  326 d12 261 d13  91 d23 647 ttime 0.232 f 48.9
 alpha  20 nBH 2 m1 45.9 m2 29.0 nrev 10 r1    74 r2   120 r3  299 d12 163 d13  99 d23 618 ttime 0.169 f 70.5
 alpha  30 nBH 2 m1 44.6 m2 29.0 nrev 10 r1    48 r2    76 r3  312 d12 109 d13 105 d23 579 ttime 0.145 f 81.6
 alpha  40 nBH 2 m1 44.1 m2 29.0 nrev 10 r1    50 r2    77 r3  221 d12  86 d13 107 d23 543 ttime 0.139 f 84.6 
 alpha  50 nBH 2 m1 44.7 m2 29.0 nrev 10 r1    45 r2    71 r3  188 d12  85 d13 105 d23 521 ttime 0.147 f 78.8
 alpha  60 nBH 2 m1 36.0 m2 38.9 nrev  1 r1 33238 r2 30682 r3  410 d12 460 d13  95 d23  49 ttime 0.500 f 35.8
 alpha  70 nBH 2 m1 36.0 m2 38.9 nrev  1 r1 30746 r2 28382 r3  382 d12 472 d13  93 d23  51 ttime 0.500 f 34.9
 alpha  80 nBH 2 m1 36.0 m2 38.9 nrev  1 r1 28772 r2 26560 r3  351 d12 480 d13  87 d23  52 ttime 0.500 f 33.8
 alpha  90 nBH 2 m1 36.0 m2 38.9 nrev  1 r1 27311 r2 25210 r3  327 d12 480 d13  80 d23  53 ttime 0.500 f 32.4
 alpha 100 nBH 2 m1 36.0 m2 38.9 nrev  1 r1 25123 r2 23192 r3  303 d12 474 d13  74 d23  55 ttime 0.500 f 31.2
 alpha 110 nBH 2 m1 36.0 m2 38.9 nrev  1 r1 18274 r2 16870 r3  272 d12 460 d13  72 d23  58 ttime 0.500 f 32.0
 alpha 120 nBH 3 m1 36.0 m2 29.0 nrev 10 r1   136 r2   169 r311725 d12  97 d13  81 d23  87 ttime 0.154 f 71.6
 alpha 130 nBH 2 m1 36.0 m2 38.9 nrev  3 r1   980 r2   906 r3  121 d12 140 d13 112 d23  74 ttime 0.500 f  4.4
 alpha 140 nBH 2 m1 44.5 m2 29.0 nrev 10 r1   281 r2   433 r3  170 d12 242 d13 105 d23 137 ttime 0.392 f 45.6
 alpha 150 nBH 1 m1 37.5 m2 29.0 nrev  1 r1    19 r2    28 r3  282 d12  48 d13  89 d23  62 ttime 0.048 f 44.8
 alpha 160 nBH 2 m1 36.0 m2 38.9 nrev  0 r1 23161 r2 21379 r3  358 d12 552 d13 563 d23  56 ttime 0.500 f 32.9
 alpha 170 nBH 2 m1 36.0 m2 38.9 nrev  0 r1 10439 r2  9636 r3  395 d12 552 d13 617 d23  60 ttime 0.500 f 32.9
 alpha 180 nBH 2 m1 36.0 m2 38.9 nrev  7 r1   785 r2   725 r3  440 d12 371 d13 642 d23  67 ttime 0.500 f 15.6
 alpha 190 nBH 2 m1 36.0 m2 38.9 nrev 10 r1   131 r2   121 r3  437 d12 218 d13 632 d23  76 ttime 0.236 f 48.1
 alpha 200 nBH 2 m1 36.0 m2 37.5 nrev 10 r1    47 r2    44 r3  353 d12  85 d13 580 d23  87 ttime 0.144 f 82.5
 alpha 200 nBH 2 m1 36.0 m2 38.9 nrev 15 r1    53 r2    47 r3  342 d12  82 d13 581 d23  87 ttime 0.203 f 86.2
 alpha 210 nBH 1 m1 45.9 m2 29.0 nrev  1 r1    33 r2    53 r3  555 d12  86 d13  74 d23 112 ttime 0.210 f 45.3
 alpha 220 nBH 2 m1 45.9 m2 29.0 nrev  1 r1 18056 r2 28639 r3  492 d12 311 d13  64 d23 137 ttime 0.500 f 43.5
 alpha 230 nBH 2 m1 45.9 m2 29.0 nrev  1 r1 22159 r2 35149 r3  457 d12 339 d13  62 d23 155 ttime 0.500 f 41.7
 alpha 240 nBH 2 m1 45.9 m2 29.0 nrev  1 r1 20910 r2 33165 r3  362 d12 360 d13  63 d23 166 ttime 0.500 f 39.8
 alpha 250 nBH 2 m1 45.9 m2 29.0 nrev  1 r1 16756 r2 26579 r3  298 d12 373 d13  67 d23 171 ttime 0.500 f 38.5
 alpha 260 nBH 2 m1 45.9 m2 29.0 nrev  1 r1  5745 r2  9113 r3  246 d12 381 d13  74 d23 174 ttime 0.500 f 37.7
 alpha 270 nBH 3 m1 36.0 m2 29.0 nrev 10 r1   326 r2   404 r3 3906 d12 102 d13 104 d23 177 ttime 0.193 f 54.4
 alpha 280 nBH 2 m1 36.0 m2 33.8 nrev 10 r1   345 r2   367 r3  246 d12 122 d13 152 d23  77 ttime 0.221 f 42.3
 alpha 290 nBH 2 m1 36.0 m2 37.7 nrev 10 r1   317 r2   302 r3  200 d12 118 d13 237 d23 103 ttime 0.201 f 63.8
 alpha 300 nBH 2 m1 45.9 m2 29.0 nrev  2 r1 17950 r2 28470 r3  308 d12 361 d13  66 d23 236 ttime 0.500 f 14.8
 alpha 310 nBH 2 m1 44.6 m2 29.0 nrev 10 r1   122 r2   190 r3  320 d12 262 d13  98 d23 227 ttime 0.220 f 63.6
 alpha 320 nBH 2 m1 36.0 m2 36.6 nrev 10 r1   249 r2   244 r3  125 d12 154 d13  73 d23  74 ttime 0.171 f 77.8
 alpha 330 nBH 2 m1 45.9 m2 29.0 nrev  0 r1 11461 r2 18179 r3  308 d12 555 d13  72 d23 544 ttime 0.500 f 32.9
 alpha 340 nBH 2 m1 45.9 m2 29.0 nrev  0 r1  5001 r2  7934 r3  313 d12 553 d13  74 d23 601 ttime 0.500 f 32.9
 alpha 350 nBH 2 m1 45.9 m2 29.0 nrev  4 r1   832 r2  1320 r3  377 d12 441 d13  78 d23 639 ttime 0.500 f  9.2
 alpha 360 nBH 2 m1 45.9 m2 29.0 nrev 10 r1   245 r2   390 r3  390 d12 372 d13  84 d23 655 ttime 0.406 f 26.2


5. Simulation of BH merger

Forward Backward
Picture 3
  • Picture 3 shows a simulation of a BH merger of 2 BH's and a third object of 12 solar masses
    Object 3 first merges with BH #1. This is the largest BH. After this the object evaporates. The merging start when the third object reaches a speed above the speed of light.
    This is the largest BH and then two BH's spiral together.
  • When Picture 3 is selected you will see the Control form at the end of the simulation.
    It is the smallest BH #2 that will reach the final speed of 300000 km/sec. That means the smallest BH in a sense that collides with the largest BH.
  • What you can also see from the Control Form that the rotation frequency of the two BH's, which started at 33 HZ at the end was 88 HZ.
  • In order to perform the simulation the following parameters are selected:
    # BH = 3, BH 1 = 36, BH 2 = 29, BH 3 = 12.
    nREv = 10. This values should at least be larger than 7 other wise the simulation stops to early.
    alpha min = 40 or 50 alpha max = 0. Zero indicates 1 simulation.
    f = 33 Hz


6. Reflection

The merging of the BH's or objects in the simulation is "controlled" by the speed of light. Generally speaking by the concept that an object can not move faster than the speed of light. If an object reaches that speed than it will physical desintegrate. In reality this desintegration can already start slower an at a much lower speed. This means that the whole process of desintegration will happen smoother.
Of course you can ask yourself the question what has the speed of light to do with the physical behaviour of Black Holes? Generally speaking nothing. It has also nothing to do with the broader concept of radiation. All the limiting physical factors are inherent (internally) in the structure of the Black Holes.
You can also raise the question if the behaviour has anything to do with Newton''s Law or General Relativity? IMO neither Newton's Law nor General Relativity have anything to do with the behaviour or evolution of physical objects.
The only thing that you can say that similar processes are described by the same mathematics or laws. As such if you observe something different (or new) you know that a different (or new) physical process is at stake which require new or modified mathematics.

7. Feedback



Created 1 March 2016
Updated 9 March 2016

Back to my home page: Contents of This Document